The Lanczos Algorithm for Large-Scale Eigenvalue Problems

Sam Handler

The Eigenvalue Problem

The Need fo Eigenvalue Solvers

The Lanczos Algorithm

The Orthogonality Problem

Implementation

Future Direction

Questions

The Lanczos Algorithm for Large-Scale Eigenvalue Problems

Sam Handler

08/01/07

The Eigenvalue Problem

The Lanczos Algorithm for Large-Scale Eigenvalue Problems

Sam Handler

The Eigenvalue Problem

The Need for Eigenvalue Solvers

The Lanczo Algorithm

The Orthogonality Problem

Implementation

Future Directions

Questions

Given a square matrix A, find values λ_i and vectors v_i such that

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

$$Av_i = \lambda_i v_i$$

• Values λ_i are called *eigenvalues*

Vectors v_i are called *eigenvectors*

Quantum Mechanics

The Lanczos Algorithm for Large-Scale Eigenvalue Problems

Sam Handler

The Eigenvalue Problem

The Need for Eigenvalue Solvers

The Lanczo Algorithm

The Orthogonality Problem

Implementation

Future Directions

Questions

The Time-Independent Schrödinger equation

 $H\Psi = E\Psi$

where *H* is the Hamiltonian operator, Ψ is a wave function, and *E* is the energy in the system.

This can be simplified so that H can be represented as a matrix and Ψ as a vector.

Eigenvalues correspond to energy levels of the system; the eigenvectors represent the corresponding wave-functions.

Graph Theory

The Lanczos Algorithm for Large-Scale Eigenvalue Problems

Sam Handler

The Eigenvalue Problem

The Need for Eigenvalue Solvers

The Lanczo Algorithm

The Orthogonality Problem

Implementation

Future Directions

Questions

- Given a graph *G*, the *centrality* of a vertex is a measure of how "important" a vertex is to a graph.
- The importance of a node is proportional to the sum of the importance of the nodes adjacent to it.
- Centrality is found by determining the eigenvector associated with the largest eigenvalue.
- This measure forms the basis for Google's PageRank[™] algorithm.

The Lanczos Algorithm

The Lanczos Algorithm for Large-Scale Eigenvalue Problems

Sam Handler

The Eigenvalue Problem

The Need for Eigenvalue Solvers

The Lanczos Algorithm

The Orthogonality Problem

Implementation

Future Directions

Questions

 Reduces a large, complicated eigenvalue problem into a smaller, simpler one

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Approximates the eigenvalues of a matrix
- Finds the smallest and largest eigenvalues fastest

The Lanczos Algorithm for Large-Scale Eigenvalue Problems

Sam Handler

The Eigenvalue Problem

The Need for Eigenvalue Solvers

The Lanczos Algorithm

The Orthogonalit Problem

Implementation

Future Direction

Questions

A is the matrix, q_1 is a random vector with $|q_1| = 1$ $q_0 = \overline{0}, \ \beta_1 = 0$ for i = 1 to m: $u = Aq_i - \beta_i q_{i-1}$

$$u = u - \alpha_i q_i$$

$$\mu = u - \alpha_i q_i$$

$$\beta_{i+1} = |u|$$

$$q_{i+1} = u/\beta_{i+1}$$

 $\alpha := \mathbf{I} \cdot \mathbf{a}$

Then find the eigenvalues of $T = \begin{pmatrix} \alpha_1 & \beta_2 & & & \\ \beta_2 & \alpha_2 & \beta_3 & & & \\ & \beta_3 & \ddots & \ddots & & \\ & & \ddots & \alpha_{m-1} & \beta_m \\ & & & & \beta_m & \alpha_m \end{pmatrix}$

The Orthogonality Problem

- The Lanczos Algorithm for Large-Scale Eigenvalue Problems
- Sam Handler
- The Eigenvalue Problem
- The Need fo Eigenvalue Solvers
- The Lanczos Algorithm
- The Orthogonality Problem
- Implementation
- Future Directions
- Questions

- Each q_i should be orthogonal to all other q vectors.
- Due to limited precision when storing vectors, new q vectors slowly become less orthogonal.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Reorthogonalization

The Lanczos Algorithm for Large-Scale Eigenvalue Problems

Sam Handler

The Eigenvalue Problem

The Need for Eigenvalue Solvers

The Lanczos Algorithm

The Orthogonality Problem

Implementation

Future Directions

Questions

- Periodically reorthogonalize the current q vector against all previous q vectors.
 - Takes a lot of time is only done when necessary
 - Use simple recurrence relations to estimate level of nonorthogonality - reorthogonalize when this level gets too large.
 - In practice, reorthogonalize about every 10-15 iterations.

Implementation Notes

The Lanczos Algorithm for Large-Scale Eigenvalue Problems

Sam Handler

The Eigenvalue Problem

The Need fo Eigenvalue Solvers

The Lanczos Algorithm

The Orthogonality Problem

Implementation

Future Directions

Questions

- Test the eigenvalues every 10 loops (adjustable).
- Test for convergence by testing the sum of the smallest (or largest) eigenvalues.

• The eigenvectors of A can be calculated as

$$v_i = \left(\begin{array}{ccc} | & & | \\ q_0 & \dots & q_n \\ | & & | \end{array}\right) w_i$$

where w_i is an eigenvector of T.

Performance

The Lanczos Algorithm for Large-Scale Eigenvalue Problems

Sam Handler

The Eigenvalue Problem

The Need for Eigenvalue Solvers

The Lanczos Algorithm

The Orthogonality Problem

Implementation

Future Directions

Questions

• Performance is largely determined by disk speed.

Example: On a matrix of size n = 108,384, performing 1000 iterations took 4437 seconds, but only 269 seconds (6%) were spent performing computations; the rest were spent waiting for the disk.

The time spent waiting for disk should decrease with larger vectors.

• For a given operation, computing time increases linearly with vector size, while load time is nearly constant.

Future Directions

The Lanczos Algorithm for Large-Scale Eigenvalue Problems

Sam Handler

The Eigenvalue Problem

The Need fo Eigenvalue Solvers

The Lanczos Algorithm

The Orthogonality Problem

Implementation

Future Directions

Questions

Goal: Further increase speed and scale of calculations

Better handling of vector storage

Keep vectors in memory longer

Store fewer vectors

Faster to regenerate vectors than load them

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Parallelize for multiple-processor machines

The Lanczos Algorithm for Large-Scale Eigenvalue Problems

Sam Handler

The Eigenvalue Problem

The Need fo Eigenvalue Solvers

The Lanczos Algorithm

The Orthogonality Problem

Implementation

Future Direction

Questions

Questions?

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Ξ.